Abstract
The lower layered nepheline syenite sequence (kakortokites) of the Mesoproterozoic alkaline to peralkaline Ilímaussaq complex, South Greenland shows spectacular rhythmic meter-scale igneous layering. The 29 exposed units have sharp contacts against each other and each of these units consists of three modally graded layers dominated by arfvedsonitic amphibole, eudialyte-group minerals, and alkali feldspar, respectively.This study uses field observations on changes in mineral orientation, recurrent mineral textures, compositional data from eudialyte-group minerals and amphibole, and settling rate calculations based on a modified Stokes' equation to explain the igneous layering of the kakortokites. We propose that the three major cumulus minerals (amphibole, eudialyte s.l., and alkali feldspar) were separated from each other by density contrasts, resulting in modally graded layers within each unit. The densest of these three minerals (amphibole) formed crystal mats within the cooling magma body. These crystal mats acted as barriers that inhibited large-scale vertical migration of melts and crystals with increasing effectiveness over time. The sub-volumes of magma captured in between the crystal mats evolved largely as geochemically independent sub-systems, as indicated by the observed trends in mineral composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.