Abstract

The band positions of three partially overlapping Fe^(2+) spin-allowed transitions located between 4000 and 9000 cm^(−1) in almandine-pyrope and almandinespessartine garnets solid solutions were measured using near-infrared (NIR) spectroscopy. The crystal field stabilization energies (CFSE) along both binaries were calculated assuming a splitting of 1100 cm^(−1) for the lower orbitals. The CFSE show a slight increase along the almandine-spessartine binary from 3730 to 3810 cm^(−1) and a larger increase from 3730 to 3970 cm^(−1) for the almandine-pyrope binary. Dodecahedral Fe^(2+)-site distortion increases with an increase in spessartine component and decreases with increasing pyrope component, in agreement with average dodecahedral site distortions determined from diffraction experiments. The excess CFSE's along both joins are negative. For the almandinespessartine binary they are small, but are about 3.5 times larger in magnitude along the join almandine-pyrope, where an interaction parameter of W= -2.9 KJ/mole has been derived from a symmetric mixing model. The excess CFSE are relatively small compared to the magnitudes of the excess enthalpies of mixing that have been assigned to garnet solid solutions. Moreover, they give no indication which could support the positive and asymmetric excess enthalpies of mixing that have been proposed for almandine-pyrope solid solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.