Abstract

Developing an efficient catalyst to upgrade 5-hydroxymethylfurfural (HMF) to high-value-added downstream chemicals is of great significance in biomass conversion. Nanorod (110)-, nanocube (100)-, and nanooctaheron (111)-CeO2 -supported Au nanoparticles were prepared to investigate the intrinsic effect of CeO2 crystal faces on the oxidation of HMF to 2,5-furandicarboxylic acid (FDCA). The experimental results and density functional theory calculation revealed that the concentration of oxygen vacancy (VO ) for exposed specific crystal faces was crucial to the oxygen adsorption ability, and Au/nanorod-CeO2 with the highest VO concentration promoted the formation of more oxygen active species (superoxide radical) on CeO2 (110) crystal face than (100) and (111) crystal faces. Besides, the higher VO concentration could provide a strong adsorption ability of HMF, greatly boosting the activation of HMF. Thus, these results led to a superior catalytic activity for HMF oxidation over Au/nanorod-CeO2 (FDCA yield of 96.5 %). In-situ Fourier-transform (FT)IR spectroscopy uncovered the HMF oxidation pathway, and the possible catalytic mechanism was proposed. The deep insight into the role of regulation for crystal faces provides a basis for the rational design of highly active facets for the oxidation of HMF and related reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.