Abstract

Inhomogeneous aggregates of late-stage titanite enriched in Zr have been described recently from post-magmatic parageneses in silica-undersaturated rocks. In the natural samples, simple isovalent substitution of the large Zr ([vi]R4+=0.72 A) for Ti ([vi]R4+=0.605 A) is limited to an empirical maximum of 0.25 afu (15.3 wt.% ZrO2). As the natural material is not suitable for crystallographic study, a series of CaTi1-xZrxOSiO4 titanite samples have been synthesized by standard ceramic methods at ambient pressure in air, and their crystal structure determined by Rietveld refinement of laboratory powder X-ray diffraction patterns. All of the synthetic Zr-doped titanite varieties adopt space group A2/a and consist of distorted CaO7 polyhedra together with less distorted (Ti1-xZrx)O6 octahedra and SiO4 tetrahedra. Cell dimensions and atomic coordinates together with volumes and distortion indices are given for all polyhedra. The empirical limit for Zr substitution in synthetic (F,OH)-free titanite is 0.5 afu (29.6 wt.% ZrO2). The existence of a Zr analogue of titanite in nature is considered to be unlikely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.