Abstract
One of the key attributes that has contributed to the popularity of Caenorhabditis elegans as a model system is its ability to survive freezing. By preserving stocks at ultralow temperature, researchers have been able to generate an unlimited number of strains without the burden of constantly maintaining them. This has facilitated the use of large-scale forward genetic screens and CRISPR-mediated genome editing where large numbers of novel and informative mutants can be generated. Traditionally, C. elegans and other nematodes were frozen using glycerol as a cryoprotectant. While effective, a large majority of animals do not survive a typical freeze-thaw cycle. Here I describe an alternative method based on the popular combination of DMSO and trehalose as a cryoprotectant. This method allows the survival of large numbers of worms and effectively protects most developmental stages including adults.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.