Abstract

We present a comprehensive exploration of loop-gap resonators for electron spin resonance (ESR) studies, enabling investigations into the hybridization of solid-state magnetic materials with microwave polariton modes. The experimental setup, implemented in a Physical Property Measurement System by Quantum Design, allows for measurements of ESR spectra at temperatures as low as 2 Kelvin. The versatility of continuous wave ESR spectroscopy is demonstrated through experiments on CuSO 4⋅5 H2O and MgCr2O4, showcasing the g-tensor and magnetic susceptibilities of these materials. The study delves into the challenges of fitting spectra under strong hybridization conditions and underscores the significance of proper calibration and stabilization. The detailed guide provided serves as a valuable resource for laboratories interested in exploring hybrid quantum systems through microwave resonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.