Abstract

A ferroelectric field-effect transistor (FeFET) with scaled dimensions (170 nm and 24 nm of gate width and length, respectively) and a 10 nm thick Si doped HfO2 ferroelectric in the gate oxide stack are characterized at cryogenic temperatures down to 6.9 K. We observe that a decrease in temperature leads to an increase in the memory window at the expense of an increased program/erase voltage. This is consistent with the increase in the ferroelectric coercive field due to the suppression of thermally activated domain wall creep motion at cryogenic temperatures. However, the observed insensitivity of the location of the memory window with respect to temperature cannot be explained by the current understanding of the device physics of FeFETs. Such temperature dependent studies of scaled FeFETs can lead to useful insights into their underlying device physics, while providing an assessment of the potential of this emerging technology for cryogenic memory applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.