Abstract

Bioluminescence from fireflies, click beetles, and railroad worms ranges in color from green-yellow to orange to red. The keto form of oxyluciferin is considered a key emitter species in the proposed mechanisms to account for color variation. To establish the intrinsic photophysics in the absence of a microenvironment, we present experimental and theoretical gas-phase absorption and emission spectra of the 5,5-dimethyloxyluciferin anion (keto form) at room and cryogenic temperatures as well as lifetime measurements based on fluorescence. The theoretical model includes all 75 vibrational modes. The spectral impact of the large number of excited states at elevated temperatures is captured by an effective state distribution. At low temperature, spectral congestion is greatly reduced, and the observed well-resolved vibrational features are assigned to multiple Franck-Condon progressions involving different vibrational modes. An in-plane ∼60 cm-1 scissoring mode is found to be involved in the dominant progressions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.