Abstract

HypothesisShear-thickening micelles were mostly made of cationic surfactants, but shear-thickening was rarely reported in the zwitterionic/anionic surfactants. Since wormlike micelles were essential in shear-thickening systems, it should be common for the hybrid wormlike micelles formed by zwitterionic/anionic surfactants, and their fundamental features need to be clarified. ExperimentsThe micellization of zwitterionic surfactant homologies alkyl dimethyl amidopropyl hydroxyl sulfobetaine (AHSB) and sodium dodecyl sulfate (SDS) in brine was studied, and various environmental factors were considered systematically. Light scattering, rheology, zeta potential, 1H NMR and cryo-TEM techniques were employed to characterize the AHSB/SDS wormlike micelles. FindingsAHSB/SDS hybrid wormlike micelles were formed in a wide xSDS region to endow them with apparent viscosities, in which the electrostatic and hydrophobic interactions between AHSB and SDS molecules were critical. AHSB with the longer tail, the higher cAHSB and cNaCl were advantageous to enhance the viscosity because of the longitudinal growth of wormlike micelles. The shear-thickening AHSB/SDS samples were commonly composed of unbranched wormlike micelles with various length, and the shear-induced alignment of wormlike micelles was the major cause as verified by cryo-TEM. Moreover, the quantitative relationships on the critical shear rate ɣ̇c were established, and the activation energies were obtained from the temperature-dependent ɣ̇c.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.