Abstract

An analytical model for crosstalk is developed for an infrared scene projector that utilizes a deformable-mirror device as an infrared spatial light modulator. Partial-coherence effects that result from the physical layout of the projection system are included. Crosstalk is determined by defining a crosstalk ratio in the projected image. Crosstalk-ratio calculations are carried out for monochromatic and blackbody projection sources over the 3- to 5-μm wavelength band. The results predict crosstalk ratios of 260:1, 1200:1, and 2400:1 for deformable-mirror pixels of 50, 100, and 150 μm when a blackbody source is used in the projection system. Crosstalk performance is improved at shorter wavelengths and for larger deformable-mirror pixels. The results of a proof-of-principle experiment are included to verify the feasibility of a deformable-mirror device in the projection system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.