Abstract

The rotation of Earth creates a cycle of day and night, leading to predictable changes in environmental conditions. The circadian clock synchronizes an organism with these environmental changes and alters their physiology in anticipation. Prediction of the probable timing of pathogen infection enables plants to prime their immune system without wasting resources or sacrificing growth. Here, we explore the relationship between the immune hormone salicylic acid (SA), and the circadian clock in Arabidopsis. We found that SA altered circadian rhythmicity through the SA receptor and master transcriptional coactivator, NPR1. Reciprocally, the circadian clock gates SA-induced transcript levels of NPR1-dependent immune genes. Furthermore, the clock gene CCA1 is essential for SA-induced immunity to the major bacterial plant pathogen Pseudomonas syringae. These results build upon existing studies of the relationship between the circadian clock and SA signalling and how interactions between these systems produce an effective immune response. Understanding how and why the immune response in plants is linked to the circadian clock is crucial in working towards improved crop productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.