Abstract

Nanomaterials (NMs) are comprehensively applied in biomedicine due to their unique physical and chemical properties. Autophagy, as an evolutionarily conserved cellular quality control process, is closely associated with the effect of NMs on cells. In this review, the recent advances in NM-induced/inhibited autophagy (NM-phagy) are summarized, with an aim to present a comprehensive description of the mechanisms of NM-phagy from the perspective of internalization, activation, and termination, thereby bridging autophagy and nanomaterials. Several possible mechanisms are extensively reviewed including the endocytosis pathway of NMs and the related cross components (clathrin and adaptor protein 2 (AP-2), adenosine diphosphate (ADP)-ribosylation factor 6 (Arf6), Rab, UV radiation resistance associated gene (UVRAG)), three main stress mechanisms (oxidative stress, damaged organelles stress, and toxicity stress), and several signal pathway-related molecules. The mechanistic insight is beneficial to understand the autophagic response to NMs or NMs' regulation of autophagy. The challenges currently encountered and research trend in the field of NM-phagy are also highlighted. It is hoped that the NM-phagy discussion in this review with the focus on the mechanistic aspects may serve as a guideline for future research in this field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.