Abstract

We report measurements of the 119Sn nuclear spin-echo decay rate 1/T2G in the heavy-fermion compound USn3. From 1/T2G, the magnetic spin-spin correlation length xi is found to vary as xi approximately T(-3/4) above approximately 100 K, which is expected for a quantum critical regime at high temperatures. Combined with the spin-lattice relaxation rate 1/T1, T1T/T2G2 is found to be temperature independent in the heavy-fermion state below T* approximately 30 K. This indicates that the heavy-fermion state of USn3 is categorized in the overdamped regime with a dynamical critical exponent z=2. These observations are consistent with a spin density wave magnetic instability at the quantum critical point.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.