Abstract
Formaldehyde (FA) is a chemical that facilitates crosslinking between DNA and proteins. It is widely used in various biochemical assays, such as chromosome conformation capture (3C) and Chromatin Immunoprecipitation (ChIP). While the concentration and temperature of FA treatment are recognized as crucial factors in crosslinking, their quantitative effects have largely remained unexplored. In this study, we employed 3C as a model system to systematically assess the impacts of these two factors on crosslinking. Our findings indicate that the strength of crosslinking significantly influences chromatin conformation detection at nearly all known structural levels. Specifically, a delicate balance between sensitivity and reliability is required when detecting higher-level structures, such as chromosome compartments. Conversely, intense crosslinking is preferred when targeting lower-level structures, such as topologically associated domains (TADs) or chromatin loops. Based on our data, we propose a conceptual molecular thermal motion model to elucidate the roles of these two factors in restricting FA crosslinking. Our results not only shed light on the previously overlooked confounding factor in FA crosslinking but also highlight the need for caution in new technology developments that rely on FA crosslinking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.