Abstract

In this work, the binary nanocomposite of crosslinked polyaniline nanorods (CPANINRs) and molybdenum disulfide (MoS2) is first synthesized by in situ polymerization, and CPANINRs/MoS2 on functionalized carbon cloth (CPANINRs/MoS2/FCC) is facilely constructed by a drop-casting method. The composition, morphology, and structure of the CPANINRs, MoS2, and CPANINRs/MoS2 binary nanocomposite are characterized by transmission electron microscope (TEM), scanning electron microscope (SEM), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). The electrochemical properties of the MoS2/FCC, CPANINRs/FCC, and CPANINRs/MoS2/FCC are tested by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD). The experiment results show that the CPANINRs/MoS2/FCC exhibits excellent stability and high specific capacitance, and its specific capacitance reaches 618.75 F g−1 at a current density of 0.5 A g−1. The CPANINRs/MoS2/FCC has a long cycling life and the capacity retention of 91.46% is obtained after 2000 cycles at a large current density of 10 A g−1. Moreover, the CPANINRs/MoS2/FCC-based symmetric supercapacitor also exhibits excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 106.4 F g−1 at a current density of 0.5 A g−1 and the capacitance retention of 93.6% is obtained after 2000 cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.