Abstract

The hydrolysis of almost ideal networks based on macrodiols of average molar mass about 2 kg mol−1, with L = 18 ester groups per chain is studied. Tensile testing is used to evaluate the crosslink density through the statistical theory of rubber elasticity at two temperatures and three values of relative humidity. A kinetic model for ester consumption including an autocatalysis term is proposed and combined with two original approaches for modeling the crosslink density changes. This allows kinetic parameters of hydrolysis to be determined, and very good predictions are obtained for the variations of crosslink density (or elastic modulus) in the three aging conditions considered. The initial curvature of elastic modulus versus time is predicted positive for weak autocatalysis and negative for strong autocatalysis. The obtained conversion ratio at degelation is found to decrease sharply with the number of esters per elastically active chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.