Abstract
This paper presents a cross-language development method for speech recognition and synthesis applications for Macedonian language. Unified system for speech recognition and synthesis trained on German language data was used for acoustic model bootstrapping and adaptation. Both knowledge-based and data-driven approaches for source and target language phoneme mapping were used for initial transcription and labeling of small amount of recorded speech. The recognition experiments on the source language acoustic model with target language dataset showed significant recognition performance degradation. Acceptable performance was achieved after Maximum a posteriori (MAP) model adaptation with limited amount of target language data, allowing suitable use for small to medium vocabulary speech recognition applications. The same unified system was used again to train new separate acoustic model for HMM based synthesis. Qualitative analysis showed, despite the low quality of the available recordings and sub-optimal phoneme mapping, that HMM synthesis produces perceptually good and intelligible synthetic speech.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.