Abstract

Let $A$ be a stably finite simple unital $C^*$-algebra and suppose $\alpha $ is an action of a finite group $G$ with the tracial Rokhlin property. Suppose further $A$ has real rank zero and the order on projections over $A$ is determined by traces. Then the crossed product $C^*$-algebra $C^*(G,A, \alpha)$ also has real rank zero and order on projections over $A$ is determined by traces. Moreover, if $A$ also has stable rank one, then $C^*(G,A, \alpha)$ also has stable rank one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.