Abstract

Glycosylation analysis of recombinant glycoproteins is of importance for the biopharmaceutical industry and the production of glycoprotein pharmaceuticals. A commercially available lectin array technology was evaluated for its ability to present a reproducible fingerprint of a recombinant CTLY4-IgG fusion glycoprotein expressed in large scale CHO-cell fermentation. The glycosylation prediction from the array was compared to traditional negative mode capillary LC-MS of released oligosaccharides. It was shown that both methods provide data that allow samples to be distinguished by their glycosylation pattern. This included information about sialylation, the presence of reducing terminal galactose β1-, terminal N-acetylglucosamine β1-, and antennary distribution. With both methods it was found that a general trend of increased sialylation was associated with an increase of the antenna and reduced amount of terminal galactose β1-, while N-acetylglucosamine β1- was less affected. LC-MS, but not the lectin array, provided valuable information about the sialic acid isoforms present, including N-acetylneuraminic acid, N-glycolylneuraminic acid and their O-acetylated versions. Detected small amounts of high-mannose structures by LC-MS correlated with the detection of the same epitope by the lectin array.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.