Abstract
Accurate and automated detection of maritime vessels present in aerial images is a considerable challenge. While significant progress has been made in recent years by adopting neural network architectures in detection and classification systems, these systems are usually designed specific to a sensor, dataset or location. In this paper, we present a system which uses multiple sensors and a convolutional neural network (CNN) architecture to test cross-sensor object detection resiliency. The system is composed of five main subsystems: Image Capture, Image Processing, Model Creation, Object-of-Interest Detection and System Evaluation. We show that the system has a high degree of cross-sensor vessel detection accuracy, paving the way for the design of similar systems which could prove robust across applications, sensors, ship types and ship sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.