Abstract
With the emergence of high-resolution fingerprint sensors, there has been a lot of focus on level-3 fingerprint features, especially the pores, for the next generation automated fingerprint recognition systems (AFRS). Following the success of deep learning in various computer vision tasks, researchers have developed learning-based approaches for detection of pores in high-resolution fingerprint images. Generally, learning-based approaches provide better performance than hand-crafted feature-based approaches. However, domain adaptability of the existing learning-based pore detection methods has never been studied. In this paper, we study this aspect and propose an approach for pore detection in cross-sensor scenarios. For this purpose, we have generated an in-house 1000 dpi fingerprint dataset with ground truth pore coordinates (referred to as IITI-HRFP-GT), and evaluated the performance of the existing learning-based pore detection approaches. The core of the proposed approach for detection of pores in cross-sensor scenarios is DeepDomainPore, which is a residual learning-based convolutional neural network (CNN) trained for pore detection. The domain adaptability in DeepDomainPore is achieved by embedding a gradient reversal layer between the CNN and a domain classifier network. The proposed approach achieves state-of-the-art performance in a cross-sensor scenario involving public high-resolution fingerprint datasets with 88.12% true detection rate and 83.82% F-score.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.