Abstract

Charge exchange and hydrogen atom pickup cross sections, and product ion time-of-flight measurements are reported for N+2 –H2O(D2O) collisions at center-of-mass collision energies ranging between 1 and 15 eV. No isotope effect is detected for the charge exchange branch, while a significant isotope effect is observed for the atom pickup reaction. Throughout the measured energy range, the time-of-flight measurements show that the H2O+(D2O+) charge exchange product is produced with near-thermal energy in the laboratory frame, implying little or no momentum transfer. The charge exchange reaction products are therefore formed with internal energy comparable to the exothermicity of the reaction (2.96 eV). The atom pickup ion product velocity distributions and the atom pickup isotope effect are consistent with a spectator stripping mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.