Abstract

Hyperspectral image (HSI) classification draws a lot of attentions in the past decades. The classical problem of HSI classification mainly focuses on a single HSI scene. In recent years, cross-scene classification becomes a new problem, which deals with the classification models that can be applied across different but highly related HSI scenes sharing common land cover classes. This paper presents a cross-scene classification framework combining spectral–spatial feature extraction and manifold-constrained feature subspace learning. In this framework, spectral–spatial feature extraction is completed using three-dimensional (3D) wavelet transform while manifold-constrained feature subspace learning is implemented via multitask nonnegative matrix factorization (MTNMF) with manifold regularization. In 3D wavelet transform, we drop some coefficients corresponding to high frequency in order to avoid data noise. In feature subspace learning, a common dictionary (basis) matrix is shared by different scenes during the nonnegative matrix factorization, indicating that the highly related scenes should share than same low-dimensional feature subspace. Furthermore, manifold regularization is applied to force the consistency across the scenes, i.e. all pixels representing the same land cover class should be similar in the low-dimensional feature subspace, though they may be drawn from different scenes. The experimental results show that the proposed method performs well in cross-scene HSI datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.