Abstract

Hybrid perovskites form an extremely attractive class of materials for large scale, low-cost photovoltaic applications. Fullerene-based charge extraction layers have emerged as a viable n-type charge collection layer, and in “inverted” p–i–n device architectures the solar cells are approaching efficiencies of 20%. However, the regular n–i–p devices employing fullerenes still lag behind in performance. Here, we show that partial solubility of fullerene derivatives in the aprotic solvents used for the perovskites makes it challenging to retain integral films in multilayer solution processing. To overcome this issue we introduce cross-linkable fullerene derivatives as charge collection layers in n–i–p planar junction perovskite solar cells. The cross-linked fullerene layers are insolubilized and deliver improved performance in solar cells enabled by a controllable film thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.