Abstract

Silicon (Si) is a promising substitute for graphite anode due to the high theoretical specific capacity (4200 mAh g−1). However, too large volume change exists during the lithiation/delithiation process. Composite anode, prepared by mixing Si with graphite, can realize higher specific capacity than graphite and much better cycle performance than Si anode. However, the capacity decay caused by pulverization of Si particles is still a great challenge. Here, a cross-linkable binder rich in nitrile, carboxyl and hydroxyl groups is designed for composite silicon-graphite (Si-C) anode. The nitrile and hydroxyl groups can be in situ cross-linked in the batteries through Ritter reaction. The cross-linked binder has excellent resilience and good adhesion to the active materials and current collector. The cycle performance of the cell with cross-linked binder is much better than the counterpart. Scanning electron microscopy results of the cycled Si-C anode show that the cross-linked binder can suppress the volume expansion and pulverization. Moreover, the investigation with X-ray photoelectronic spectrum and density function theory calculation demonstrate that the decomposition of ester solvent and LiPF6 on Si anode has been mitigated and more stable SEI film is formed on the Si-C anode. Our strategy of in situ cross-linking binder in the batteries has provided a feasible way for designing the next generation of silicon-based anodes with higher specific capacity and longer cycling life.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.