Abstract

Spray cross-impingement in a high-pressure chamber (10–30 atm) was studied experimentally, the results being compared to the spray opposed-impingement. The comparison was subsequently extended to the spray combustion in a model opposed-piston compression ignition engine. To account for the ambient pressure effects in collision outcomes, a recently proposed pressure-dependent droplet collision model was implemented in the KIVA-3V computer program for simulating the experiments. Compared with the widely used Estrade et al.’s and O’Rourke’s models, the pressure-dependent model produces satisfactory predictions to spray characteristics. The uncertainty of the kinetic energy recovery coefficient, which affects the post-collision characteristics of bouncing droplets, was found to cause insignificant difference in model predictions. In the high-pressure chamber, droplet collisions in cross-impingement occur earlier than those in the opposed-impingement and result in more coalescence, consequently producing larger droplet sizes. With increasing the ambient pressure, the increasing tendency of droplet bouncing diminishes the difference of these two spray impingements. In the model OPCI, the presence of strong swirling flow deflects sprays from impingement and therefore the opposed-impingement shows slightly better combustion performance by producing more spatially uniform droplet distribution. However, the spray cross-impingement enhances droplet collision hence promotes atomization in the absence of swirling flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.