Abstract
A new deterministic model for the transmission dynamics of two strains of influenza is designed and used to qualitatively assess the role of cross-immunity on the transmission process. It is shown that incomplete cross-immunity could induce the phenomenon of backward bifurcation when the associated reproduction number is less than unity. The model undergoes competitive exclusion (where Strain i drives out Strain j to extinction whenever R0i>1>R0j;i,j=1,2,i≠j). For the case where infection with one strain confers complete immunity against infection with the other strain, it is shown that the disease-free equilibrium of the model is globally-asymptotically stable whenever the reproduction number is less than unity. In the absence of cross-immunity, the model can have a continuum of co-existence endemic equilibria (which is shown to be globally-asymptotically stable for a special case). When infection with one strain confers incomplete immunity against the other, numerical simulations of the model show that the two strains co-exist, with Strain i dominating (but not driving out Strain j), whenever R0i>R0j>1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.