Abstract

We address a controversial issue regarding the nature of critical behavior in ternary electrolyte solutions of water, 3-methylpyridine, and sodium bromide. Earlier light-scattering studies showed an anomalous critical behavior in this system that was attributed to the formation of a microheterogeneous phase associated with ion-molecule clustering [M.A. Anisimov, J. Jacob, A. Kumar, V.A. Agayan, and J. V. Sengers, Phys. Rev. Lett. 85, 2336 (2000)]], while some other investigators subsequently found this system to exhibit ordinary Ising-like critical behavior. This contradiction forced us to revisit the problem and perform an accurate and comprehensive study of light scattering in this system paying attention to the achievement of thermodynamic equilibrium, hysteresis effects, aging, and prehistory of the samples, and a possible role of impurities. We show that properly aged, equilibrium samples of aqueous solutions of 3-methylpyridine with NaBr exhibit universal Ising-like critical behavior, typical for other aqueous solutions. No evidence for an equilibrium microheterogeneous phase was found. We have been able to reproduce anomalous behavior (similar to that reported initially) in a fast run on a freshly prepared sample. We attribute the observed anomalies to mesoscopic nonequilibrium aggregates, possibly associated with supramolecular restructuring in aqueous solutions. To support this conclusion we performed a study of aqueous solutions of 3-methylpyridine without NaBr and have found long-living nonequilibrium states in aqueous solutions of 3-methylpyridine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.