Abstract
The global dynamics of a nonautonomous Carathéodory scalar ordinary differential equation x′=f(t,x) , given by a function f which is concave in x, is determined by the existence or absence of an attractor-repeller pair of hyperbolic solutions. This property, here extended to a very general setting, is the key point to classify the dynamics of an equation which is a transition between two nonautonomous asymptotic limiting equations, both with an attractor-repeller pair. The main focus of the paper is to get rigorous criteria guaranteeing tracking (i.e. connection between the attractors of the past and the future) or tipping (absence of connection) for the particular case of equations x′=f(t,x−Γ(t)) , where Γ is asymptotically constant. Some computer simulations show the accuracy of the obtained estimates, which provide a powerful way to determine the occurrence of critical transitions without relying on a numerical approximation of the (always existing) locally pullback attractor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.