Abstract

Cholesteryl ester liquid crystal was found to be non-toxic and it was recently applied as a cell traction force sensor. The reason for the affinity of the cells to this liquid crystal is unclear and required further investigation. This paper focused on determining the surface energy of the liquid crystals. A custom built contact angle measurement system and Fox-Zisman theory was applied to determine the critical surface tension of the cholesteryl ester liquid crystal. Eight different polar probe liquids were selected to determine the contact angle of the glass slides coated with cholesteryl ester liquid crystals. We found that the critical surface tension of the liquid crystal at 37.5 mN/m characterized the surface of the liquid crystal to be moderately hydrophobic. However, as reported in our previous work that the interaction of the liquid crystal and the cell culture media could re-orientate the amphiphilic molecules of the liquid crystals leading to the formation of lyotropic layers on the bulk cholesteric phase, therefore, making the surface to be hydrophilic. This then supported the formation of the hydrophilic layers that favors cell adhesion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.