Abstract
Single neurons in primate V2 and cat A18 exhibit identical orientation tuning for sinewave grating and illusory contour stimuli. This cue invariance is also manifested in similar orientation maps to these stimuli, but in V1/A17 the illusory contour maps appear reversed. We hypothesized that this map reversal depends upon the spatial frequencies of the inducers in the illusory contours, relative to the spatial selectivities of these brain areas. We employed intrinsic signal optical imaging to measure orientation maps in cat A17/18 to illusory contours with inducers at spatial frequencies from 0.15 to 1.6 cpd. A17 illusory contour maps were indeed reversed compared with grating-driven maps for inducer spatial frequencies <1.3 cpd, whereas A18 maps were invariant. Simulations based on known neurophysiology demonstrated that map reversal can arise from linear filtering, and map invariance can be explained by a nonlinear (filter-rectify-filter) mechanism. The simulation also correctly predicted that A17 could show invariant maps when the inducer spatial frequency is sufficiently high (1.6 cpd), and that A18 maps could reverse at lower inducer frequencies (0.18 cpd). Thus, the map reversal or invariance to illusory contours depends critically on the relationship of the inducer spatial frequencies to the spatial filtering properties of neurons in each brain area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.