Abstract

Ion and water are transported by electroconvection near permselective membranes, resulting in complex phenomena associated with the flow–fines interaction. Sheltering the flow chaos by the shear flow is a common strategy in plasma fluids and has recently been successfully applied to control ionic fluids. The paper herein reveals the critical selection of shear velocity regarding the fluid from a chaotic to a steady state through numerical and theoretical analyses. For the shear sheltering, the dimensionless Debye length ${\lambda _D}$ with varying channel height is introduced to achieve a comprehensive discussion of the factors and laws affecting the shear vortex state. Based on an analysis of the vortex driving mechanism, the scaling of the slip velocity ${u_s}\sim {(\lambda _D^{ - 1}\Delta {\phi ^4})^{1/3}}$ is recommended as the critical selection factor for the steady and chaotic state under a fixed shear flow velocity, which involves the dimensionless Debye length ${\lambda _D}$ and voltage difference $\Delta \phi $ . Furthermore, for ionic fluid control by shear flow, a critical shear velocity ${U_{HPC}}$ is proposed to distinguish the electroconvective flow from a chaotic state to a steady state. When the shear flow velocity ${U_{HP}} > {U_{HPC}}$ , the shear flow shelters chaos, and the scaling law is also recommended for the regulation of the critical shear flow velocity ${U_{HPC}}$ jointly by ${\lambda _D}$ and $\Delta \phi $ . The analysis is confirmed by direct numerical simulation and existing experimental data (J. Fluid Mech, vol. 813, 2017, pp. 799–823). This work provides a more comprehensive physical insight for shear sheltering and affects the design of electromembrane microfluidics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.