Abstract

Soluble beta-amyloid (Aβ) oligomers are considered to putatively play a critical role in the early synapse loss and cognitive impairment observed in Alzheimer's disease. We previously demonstrated that Aβ oligomers activate cytosolic phospholipase A2 (cPLA2), which specifically releases arachidonic acid from membrane phospholipids. We here observed that cPLA2 gene inactivation prevented the alterations of cognitive abilities and the reduction of hippocampal synaptic markers levels noticed upon a single intracerebroventricular injection of Aβ oligomers in wild type mice. We further demonstrated that the Aβ oligomer-induced sphingomyelinase activation was suppressed and that phosphorylation of Akt/protein kinase B (PKB) was preserved in neuronal cells isolated from cPLA2−/− mice. Interestingly, expression of the Aβ precursor protein (APP) was reduced in hippocampus homogenates and neuronal cells from cPLA2−/− mice, but the relationship with the resistance of these mice to the Aβ oligomer toxicity requires further investigation. These results therefore show that cPLA2 plays a key role in the Aβ oligomer-associated neurodegeneration, and as such represents a potential therapeutic target for the treatment of Alzheimer's disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.