Abstract

We used a combination of protein engineering and spectroscopic methods to investigate the effect of a long length loop on the conformational stability and activity of chondroitinase ABC I. This study involves manipulation of interactions around Asp(689) as a key residue in the central region of the loop containing residues 681-695 located at C-terminal domain of the enzyme. According to the equilibrium unfolding experiments and considering thermodynamic m value and ΔG(H2O), we found that the folded state of H700N, L701T, and H700N/L701T are more compact relative to the folded state of wild-type protein and they become stabilized upon mutation. However, the compactness and stability of other variants are less than those of wild-type protein. According to enzyme activity measurements, we found that the catalytic efficiency of structurally stabilized variants is decreased, while that of destabilized mutants is improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.