Abstract

Software developers predict their product’s failure rate using reliability growth models that are typically based on nonhomogeneous Poisson (NHP) processes. In this article, we extend that practice to a nonhomogeneous discrete-compound Poisson process that allows for multiple faults of a system at the same time point. Along with traditional reliability metrics such as average number of failures in a time interval, we propose an alternative reliability index called critical fault-detecting time in order to provide more information for software managers making software quality evaluation and critical market policy decisions. We illustrate the significant potential for improved analysis using wireless failure data as well as simulated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.