Abstract
Abstract The aim of this article is to understand the geometry of limit sets in pseudo-Riemannian hyperbolic geometry. We focus on a class of subgroups of $\textrm{PO}(p,q+1)$ introduced by Danciger, Guéritaud, and Kassel, called ${\mathbb{H}}^{p,q}$-convex cocompact. We define a pseudo-Riemannian analogue of critical exponent and Hausdorff dimension of the limit set. We show that they are equal and bounded from above by the usual Hausdorff dimension of the limit set. We also prove a rigidity result in ${\mathbb{H}}^{2,1}={\mathbb{A}}\textrm{d}{\mathbb{S}}^3$, which can be understood as a Lorentzian version of a famous Theorem of R. Bowen in $3$D hyperbolic geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.