Abstract

Amorphous complexions in nanocrystalline metals have the potential to improve mechanical properties and radiation tolerance, as well as resistance to grain growth. In this study, the stability of amorphous complexions in binary and ternary Cu-based alloys is investigated by observing the effect of cooling rate from high temperature on the occurrence of amorphous-to-ordered complexion transitions. Bulk Cu-Zr and Cu-Zr-Hf alloy samples were annealed to induce boundary premelting and then quenched through a procedure that induces a gradient of local cooling rate through the sample height. Amorphous complexion thickness distributions were found to be invariant to local cooling rate in the Cu-Zr-Hf alloy, demonstrating enhanced stability of the amorphous complexion structure compared to the Cu-Zr alloy, which had thinner amorphous complexions in the regions that were slowly cooled. The experimental results are used to construct time-temperature-transformation diagrams for the amorphous-to-ordered complexion transition in both the binary and ternary alloys, enabling a deeper understanding of the influence of cooling rate and grain boundary chemistry on complexion transitions. The critical cooling rate necessary to avoid complexion transitions in the ternary alloy is found to be at least three orders of magnitude slower than that for the binary alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.