Abstract

AbstractSurface‐exposure dating (SED) methods typically rely on the measurement of a geochemical parameter that systematically changes with time. A pivotal task in the calibration of many of these techniques is to demonstrate that lava flow surfaces sampled for dating have not experienced erosion. Although criteria for identification of constructional basaltic lava flow surfaces have been published, no such criteria presently exist for the recognition of constructional silicic flows. Here we present several criteria for identifying constructional silicic lava flow features in the field. First, crease structures are fractures with easily identified, curved, striated walls that are commonly observed on recent and active silicic lava flows. Crease structures form during extrusion, and are resistant to mechanical disintegration because they expose dense material from the flow interior. Second, some crease structures break apart during formation, leaving a deposit of striated blocks on the flow surface. Crease structure blocks are striated on only one side, whereas blocks from internal columnar joints exposed through erosion are striated on two or more sides. Only the striated side of the crease structure block is definitively constructional. Finally, many silicic flow surfaces exhibit expanded or breadcrusted textures. These features consist of a dense, fractured rind, 1 –2cm thick, enclosing highly vesicular material. Breadcrust flow textures appear similar to breadcrust bombs produced during volcanic explosions, so it is imperative to demonstrate that they are part of the lava flow surface. These criteria should enable investigators to positively identify constructional silicic lava flow surfaces when calibrating an SED method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.