Abstract
This letter presents a novel use of a waveguide circuit consisting of a two-ring resonator-assisted asymmetrical Mach-Zehnder interferometer, which realizes a narrow-passband filter in the context of microwave photonics (MWP). The filter principle is an alternative to the coupled resonator induced transparency and features easy implementation and robust performance. In the experimental demonstration, such a circuit fabricated in SiO <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> /Si <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">4</sub> waveguide technology exhibits a narrow transmission window surrounded by a region of significant suppression. The transmission window features a -3-dB bandwidth of 1 GHz and a -20-dB bandwidth of 3.5 GHz, equivalently a 20-dB roll-off enhancement of three times as compared with a regular add-drop ring resonator. In addition, the investigated waveguide circuit features full reconfigurability based on tunable phase shifters and power couplers. This allows the proposed filter functionality to be combined with other functionalities in a common device, which is of high interest for the realization of flexible on-chip MWP signal processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.