Abstract

Clustered regularly interspaced short palindromic repeats (CRISPR) are currently a topic of interest in microbiology due to their role as a prokaryotic immune system. Investigations of CRISPR distribution and characterization to date have focused on pathogenic bacteria, while less is known about CRISPR in commensal bacteria, where they may have a significant role in the ecology of the microbiota of humans and other animals, and act as a recorder of interactions between bacteria and viruses. A combination of PCR and sequencing was used to determine prevalence and distribution of CRISPR arrays in Enterococcus faecalis and Enterococcus hirae isolates from the feces of healthy pigs. Both type II CRISPR-Cas and Orphan CRISPR (without Cas genes) were detected in the 195 isolates examined. CRISPR-Cas was detected in 52 (46/88) and 42 % (45/107) E. faecalis and E. hirae isolates, respectively. The prevalence of Orphan CRISPR arrays was higher in E. faecalis isolates (95 %, 84/88) compared with E. hirae isolates (49 %, 53/107). Species-specific repeat sequences were identified in Orphan CRISPR arrays, and 42 unique spacer sequences were identified. Only two spacers matched previously characterized pig virome sequences, and many were apparently derived from chromosomal sequences of enterococci. Surprisingly, 17 (40 %) of the spacers were detected in both species. Shared spacer sequences are evidence of a lack of species specificity in the agents and mechanisms responsible for integration of spacers, and the abundance of spacer sequences corresponding to bacterial chromosomal sequences reflects interspecific interactions within the intestinal microbiota.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.