Abstract

Following the birth in 2018 of two babies from embryos altered using CRISPR-Cas9, human germline gene editing (GGE) moved from abstract concern to reality. He Jiankui, the scientist responsible, has been roundly condemned by most scientific, legal and ethical commentators. However, opinions remain divided on whether GGE could be acceptably used in the future, and how, or if it should be prohibited entirely. The many reviews, summits, positions statements and high-level meetings that have accompanied the emergence of CRISPR technology acknowledge this, calling for greater public engagement to help reach a consensus on how to proceed. These calls are laudable but far from unproblematic. Consensus is not only hugely challenging to reach, but difficult to measure and to know when it might be achieved. Engagement is clearly desirable, but engagement strategies need to avoid the limitations of previous encounters between publics and biotechnology. Here we set CRISPR in the context of the biotechnology and fertility industries to illustrate the lessons to be learned. In particular we demonstrate the importance of avoiding a ‘deficit mode’ in which resistance is attributed to a lack of public understanding of science, addressing the separation of technical safety criteria from ethical and social matters, and ensuring the scope of the debate includes the political-economic context in which science is conducted and new products and services are brought to market. Through this history, we draw on Mary Douglas’ classic anthropological notion of ‘matter out of place’ to explain why biotechnologies evoke feelings of unease and anxiety, and recommend this as a model for rehabilitating lay apprehension about novel biological technologies as legitimate matters of concern in future engagement exercises about GGE.

Highlights

  • On 25 November 2018, on the eve of a major scientific summit in Hong Kong, a Chinese scientist named He Jiankui made a startling announcement: as a result of experiments conducted at his clinic, the world’s first genetically edited babies had been born (Regalado, 2018b).The news was tumultuous and unexpected

  • The announcement was unexpected not because the technical possibility itself was unanticipated—techniques to alter the genetic material of living cells have been around since the 1970s, and scientists have long expected they could one day be used for this purpose—but because human applications have remained limited due to concerns about safety and efficacy, even as modification of bacteria, plants and animals has become routine

  • CRISPR utilises a natural function of bacteria, which is faster, cheaper and easier to use than earlier techniques to target and change DNA

Read more

Summary

Introduction

On 25 November 2018, on the eve of a major scientific summit in Hong Kong, a Chinese scientist named He Jiankui made a startling announcement: as a result of experiments conducted at his clinic, the world’s first genetically edited babies had been born (Regalado, 2018b). Unsuccessful, attempt in 1980 to treat sickle cell disease using rDNA (see Beutler, 2001), the US President’s Commission for the Study of Ethical Problems in Medicine, and Biomedical and Behavioral Research issued a report, ‘Splicing Life’ (1982), which codified and popularised two key distinctions that continue to shape discussions of human genetic modification to this day: treatment of disease versus enhancing normal human characteristics, and making non-inheritable changes to the genome of individual patients versus making changes to embryos, sperm or eggs that can be passed on to future offspring—often described pejoratively in popular accounts as creating ‘designer babies’ (Nerlich, 2017) While these events were unfolding, research was being carried out in a number of seemingly unrelated areas that would have an important role in eventually making GGE a practical reality. We discuss these frictions as part of the business of science, detailing how previous encounters affect the context of deployment of CRISPR, the separation of technical from ethical issues, and place an emphasis on high-level consensus engagements that are not fit for the purposes of real governance

The business of science
Additional information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.