Abstract

Erythromycins are a group of macrolide antibiotics produced by Saccharopolyspora erythraea. Erythromycin biosynthesis, which is a long pathway composed of a series of biochemical reactions, is precisely controlled by the type I polyketide synthases and accessary tailoring enzymes encoded by ery cluster. In the previous work, we have characterized that six genes representing extremely low transcription levels, SACE_0716-SACE_0720 and SACE_0731, played important roles in limiting erythromycin biosynthesis in the wild-type strain S. erythraea NRRL 23338. In this study, to relieve the potential bottlenecks of erythromycin biosynthesis, we fine-tuned the expression of each key limiting ery gene by CRISPR/Cas9-mediated multi-locus promoter engineering. The native promoters were replaced with different heterologous ones of various strengths, generating ten engineered strains, whose erythromycin productions were 2.8- to 6.0-fold improved compared with that of the wild-type strain. Additionally, the optimal expression pattern of multiple rate-limiting genes and preferred engineering strategies of each locus for maximizing erythromycin yield were also summarized. Collectively, our work lays a foundation for the overall engineering of ery cluster to further improve erythromycin production. The experience of balancing multiple rate-limiting factors within a cluster is also promising to be applied in other actinomycetes to efficiently produce value-added natural products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.