Abstract
Scientists have discovered many ways to treat bacteria, viruses, and parasites in aquaculture; however, there is still an impossibility in finding a permanent solution for all types of diseases. In that case, the CRISPR-Cas genome-editing technique can be the potential solution to preventing diseases for aquaculture sustainability. CRISPR-Cas is cheaper, easier, and more precise than the other existing genome-editing technologies and can be used as a new disease treatment tool to solve the far-reaching challenges in aquaculture. This technique may now be employed in novel ways, such as modifying a single nucleotide base or tagging a location in the DNA with a fluorescent protein. This review paper provides an informative discussion on adopting CRISPR technology in aquaculture disease management. Starting with the basic knowledge of CRISPR technology and phages, this study highlights the development of RNA-guided immunity to combat the Chilodonella protozoan group and nervous necrosis virus (NNV) in marine finfish. Additionally, we highlight the immunological application of CRISPR-Cas against bacterial diseases in channel catfish and the white spot syndrome virus (WSSV) in shrimp. In addition, the review summarizes a synthesis of bioinformatics tools used for CRISPR-Cas sgRNA design, and acceptable solutions are discussed, considering the limitations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.