Abstract

The CRISPR-Cas system, an adaptive immunity system in prokaryotes designed to combat phages and foreign nucleic acids, has evolved into a groundbreaking technology enabling gene knockout, large-scale gene insertion, base editing, and nucleic acid detection. Despite its transformative impact, the conventional CRISPR-Cas effectors face a significant hurdle-their size poses challenges in effective delivery into organisms and cells. Recognizing this limitation, the imperative arises for the development of compact and miniature gene editors to propel advancements in gene-editing-related therapies. Two strategies were accepted to develop compact genome editors: harnessing OMEGA (Obligate Mobile Element-guided Activity) systems, or engineering the existing CRISPR-Cas system. In this review, we focus on the advances in miniature genome editors based on both of these strategies. The objective is to unveil unprecedented opportunities in genome editing by embracing smaller, yet highly efficient genome editors, promising a future characterized by enhanced precision and adaptability in the genetic interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.