Abstract

Crime poses a major threat to human life and property, which has been recognized as one of the most crucial problems in our society. Predicting the number of crime incidents in each region of a city before they happen is of great importance to fight against crime. There has been a great deal of research focused on crime prediction, ranging from introducing diversified data sources to exploring various prediction models. However, most of the existing approaches fail to offer fine-scale prediction results and take little notice of the intricate spatial-temporal-categorical correlations contained in crime incidents. In this article, we propose a tailor-made framework called CrimeTensor to predict the number of crime incidents belonging to different categories within each target region via tensor learning with spatiotemporal consistency. In particular, we model the crime data as a tensor and present an objective function which tries to take full advantage of the spatial, temporal, and categorical correlations contained in crime incidents. Moreover, a well-designed optimization algorithm which transforms the objective into a compact form and then applies CP decomposition to find the optimal solution is elaborated to solve the objective function. Furthermore, we develop an enhanced framework which takes a set of pre-selected regions to conduct prediction so as to further improve the computational efficiency of the optimization algorithm. Finally, extensive experiments are performed on both proprietary and public datasets and our framework significantly outperforms all the baselines in terms of each evaluation metric.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.