Abstract
Creep-rupture behavior and microstructural response in alumina-forming austenitic (AFA) alloys with two different precipitation strengthening mechanisms, “Laves-phase + M23C6 carbide” and “coherent L12 γ′-Ni3(Al,Ti),” were explored as “model” cases of multi-phase, multi-scale heat-resistant AFA alloys for 650–750°C use. These alloys will be used to guide and verify computational alloy design and life-prediction modeling under an on-going eXtremeMAT project through the Office of Fossil Energy and Carbon Management, US Department of Energy. Computational thermodynamics were used to design and predict the amounts of strengthening and deteriorating secondary phases at 750°C. Creep-rupture lives of the alloys tested at 750°C and 100 MPa were in a range of 4000–9000 h, and the microstructure at the gage/grip after creep-rupture testing was compared with isothermally aged alloys for 1500 h, as well as the calculated phases. Detailed microstructure characterization includes phase identification, volume fraction measurement, and compositional analysis, which were correlated with the creep-rupture properties. High-temperature oxidation resistance was also screened and compared with commercial, chromia-forming heat-resistant steels. These model alloys also provide the basis for further design and optimization of next generation AFA alloys with improved creep resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.