Abstract
In the paper, text mining and visualization by self-organizing map (SOM) are investigated. At first, textual information must be converted into numerical one. The results of text mining and visualization depend on the conversion. So, the influence of some control factors (the common word list and usage of the stemming algorithm) on text mining results, when a document dictionary is created, is investigated. A self-organizing map is used for text clustering and graphical representation (visualization). A comparative analysis is made where a dataset consists of scientific papers about the optimization, based on Pareto, simplex, and genetic algorithms. Two new measures are also proposed to estimate the SOM quality when the classified data are analyzed: distances between SOM cells, corresponding to data items assigned to the same class, and the distance between centers of SOM cells, corresponding to different classes. The quantization error is measured to estimate the SOM quality, too. DOI: http://dx.doi.org/10.5755/j01.itc.43.1.4299
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.