Abstract

The creation of a vascular system is considered to be the main object for complex organ manufacturing. In this short review, we demonstrate two approaches to generate a branched vascular system which can be printed using rapid prototyping or bioprinting techniques. One approach is constructing mathematical tree models on the basis of human physiological characteristics and calculating the model using constrained constructive optimization to obtain three-dimensional (3D) geometrical structures. The rules of the branching of the vessel tree were extracted from the literature. Another approach is using computer-aided design models to build a multi-scale vascular network including arteries, veins, and capillaries. A 3D vascular template with both synthetic scaffold polymer and cell/hydrogel was created in our group, using a double-nozzle, low-temperature deposition technique. Each of the approaches holds promise in producing a vascular system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.