Abstract

Currently, implementation of the breeding programs, including the commonly recognized areas and classic breeding methods, cannot sufficiently ensure a quick and significant increase in the productivity of sugar beet hybrids, since its gene pool is almost exhausted. Based on the achievements in the field of genetics, new approaches to and opportunities in creating highly productive agrocoenoses of sugar beet have become popular. As a result of many years of work, results have been obtained about the nature of inheriting the resistance to glyphosate in individual heterozygous apo- and syncarpous forms in case of inbreeding and pair mating with the MC tester. The expression of target genes in the generations was monitored by the survival rate of sugar beet plants after the treatment with glyphosate. During the research, individuals with a high level of gene expression were selected. Upon self-pollination of initial heterozygous original forms, deviations from Mendelian segregation were observed in most cases. The criterion for assessing the stability of expression of glyphosate resistance genes in case of seed breeding was the compliance with the laws of Mendel among the analyzed descendants. In the initial stages of the research, the level of stability gene expression had been 10 – 15 % of the total number of analyzed plants. After four self-pollinations, the stability gene expression significantly increased, and genotypes with the resistance of 91 – 100 % were selected. The first apo- and syncarpous self-pollinating lines of sugar beet with high tolerance in the role of resistance donors have been created. The positive results of preliminary tests of the first glyphosate-tolerant hybrids need confirmation. Seeds and roots of resistant forms have been obtained for further research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.