Abstract

Materials with strong magnetostructural coupling have complex energy landscapes featuring multiple local ground states, thus making it possible to switch among distinct magnetic-electronic properties. However, these energy minima are rarely accessible by a mere application of an external stimuli to the system in equilibrium state. A ferromagnetic ground state, with Tc above room temperature, can be created in an initially paramagnetic alloy by nonequilibrium nanostructuring. By a dealloying process, bulk chemically disordered FeRh alloys are transformed into a nanoporous structure with the topology of a few nanometer-sized ligaments and nodes. Magnetometry and Mössbauer spectroscopy reveal the coexistence of two magnetic ground states, a conventional low-temperature spin-glass and a hitherto-unknown robust ferromagnetic phase. The emergence of the ferromagnetic phase is validated by density functional theory calculations showing that local tetragonal distortion induced by surface stress favors ferromagnetic ordering. The study provides a means for reaching conventionally inaccessible magnetic states, resulting in a complete on/off ferromagnetic-paramagnetic switching over a broad temperature range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.